π’ Announcing our research paper: Zentry achieves 26% higher accuracy than OpenAI Memory, 91% lower latency, and 90% token savings! Read the paper to learn how we're revolutionizing AI agent memory.
The Zentry AI SDK Provider is a library developed by Zentry to integrate with the Vercel AI SDK. This library brings enhanced AI interaction capabilities to your applications by introducing persistent memory functionality.
π Exciting news! Zentry AI SDK now supports Graph Memory.
Overview
- π§ Offers persistent memory storage for conversational AI
- π Enables smooth integration with the Vercel AI SDK
- π Ensures compatibility with multiple LLM providers
- π Supports structured message formats for clarity
- β‘ Facilitates streaming response capabilities
Setup and Configuration
Install the SDK provider using npm:
npm install @Zentry/vercel-ai-provider
Getting Started
Setting Up Zentry
-
Get your Zentry API Key from the Zentry Dashboard.
-
Initialize the Zentry Client in your application:
import { createZentry } from "@Zentry/vercel-ai-provider";
const Zentry = createZentry({
provider: "openai",
ZentryApiKey: "m0-xxx",
apiKey: "provider-api-key",
config: {
compatibility: "strict",
},
// Optional Zentry Global Config
ZentryConfig: {
user_id: "Zentry-user-id",
org_id: "Zentry-org-id",
project_id: "Zentry-project-id",
},
});
Note: The openai provider is set as default. Consider using Zentry_API_KEY and OPENAI_API_KEY as environment variables for security.
Note: The ZentryConfig is optional. It is used to set the global config for the Zentry Client (eg. user_id, agent_id, app_id, run_id, org_id, project_id etc).
-
Add Memories to Enhance Context:
import { LanguageModelV1Prompt } from "ai";
import { addMemories } from "@Zentry/vercel-ai-provider";
const messages: LanguageModelV1Prompt = [
{ role: "user", content: [{ type: "text", text: "I love red cars." }] },
];
await addMemories(messages, { user_id: "borat" });
Standalone Features:
await addMemories(messages, { user_id: "borat", ZentryApiKey: "m0-xxx", org_id: "org_xx", project_id: "proj_xx" });
await retrieveMemories(prompt, { user_id: "borat", ZentryApiKey: "m0-xxx", org_id: "org_xx", project_id: "proj_xx" });
await getMemories(prompt, { user_id: "borat", ZentryApiKey: "m0-xxx", org_id: "org_xx", project_id: "proj_xx" });
For standalone features, such as addMemories, retrieveMemories, and getMemories, you must either set Zentry_API_KEY as an environment variable or pass it directly in the function call.
getMemories will return raw memories in the form of an array of objects, while retrieveMemories will return a response in string format with a system prompt ingested with the retrieved memories.
getMemories is an object with two keys: results and relations if enable_graph is enabled. Otherwise, it will return an array of objects.
1. Basic Text Generation with Memory Context
import { generateText } from "ai";
import { createZentry } from "@Zentry/vercel-ai-provider";
const Zentry = createZentry();
const { text } = await generateText({
model: Zentry("gpt-4-turbo", { user_id: "borat" }),
prompt: "Suggest me a good car to buy!",
});
2. Combining OpenAI Provider with Memory Utils
import { generateText } from "ai";
import { openai } from "@ai-sdk/openai";
import { retrieveMemories } from "@Zentry/vercel-ai-provider";
const prompt = "Suggest me a good car to buy.";
const memories = await retrieveMemories(prompt, { user_id: "borat" });
const { text } = await generateText({
model: openai("gpt-4-turbo"),
prompt: prompt,
system: memories,
});
import { generateText } from "ai";
import { createZentry } from "@Zentry/vercel-ai-provider";
const Zentry = createZentry();
const { text } = await generateText({
model: Zentry("gpt-4-turbo", { user_id: "borat" }),
messages: [
{
role: "user",
content: [
{ type: "text", text: "Suggest me a good car to buy." },
{ type: "text", text: "Why is it better than the other cars for me?" },
],
},
],
});
3. Streaming Responses with Memory Context
import { streamText } from "ai";
import { createZentry } from "@Zentry/vercel-ai-provider";
const Zentry = createZentry();
const { textStream } = await streamText({
model: Zentry("gpt-4-turbo", {
user_id: "borat",
}),
prompt: "Suggest me a good car to buy! Why is it better than the other cars for me? Give options for every price range.",
});
for await (const textPart of textStream) {
process.stdout.write(textPart);
}
import { generateText } from "ai";
import { createZentry } from "@Zentry/vercel-ai-provider";
import { z } from "zod";
const Zentry = createZentry({
provider: "anthropic",
apiKey: "anthropic-api-key",
ZentryConfig: {
// Global User ID
user_id: "borat"
}
});
const prompt = "What the temperature in the city that I live in?"
const result = await generateText({
model: Zentry('claude-3-5-sonnet-20240620'),
tools: {
weather: tool({
description: 'Get the weather in a location',
parameters: z.object({
location: z.string().describe('The location to get the weather for'),
}),
execute: async ({ location }) => ({
location,
temperature: 72 + Math.floor(Math.random() * 21) - 10,
}),
}),
},
prompt: prompt,
});
console.log(result);
5. Get sources from memory
const { text, sources } = await generateText({
model: Zentry("gpt-4-turbo"),
prompt: "Suggest me a good car to buy!",
});
console.log(sources);
The same can be done for streamText as well.
Graph Memory
Zentry AI SDK now supports Graph Memory. You can enable it by setting enable_graph to true in the ZentryConfig object.
const Zentry = createZentry({
ZentryConfig: { enable_graph: true },
});
You can also pass enable_graph in the standalone functions. This includes getMemories, retrieveMemories, and addMemories.
const memories = await getMemories(prompt, { user_id: "borat", ZentryApiKey: "m0-xxx", enable_graph: true });
The getMemories function will return an object with two keys: results and relations, if enable_graph is set to true. Otherwise, it will return an array of objects.
Key Features
createZentry(): Initializes a new Zentry provider instance.
retrieveMemories(): Retrieves memory context for prompts.
getMemories(): Get memories from your profile in array format.
addMemories(): Adds user memories to enhance contextual responses.
Best Practices
-
User Identification: Use a unique
user_id for consistent memory retrieval.
-
Memory Cleanup: Regularly clean up unused memory data.
Note: We also have support for agent_id, app_id, and run_id. Refer Docs.
Conclusion
Zentryβs Vercel AI SDK enables the creation of intelligent, context-aware applications with persistent memory and seamless integration.
- For more details on Vercel AI SDK, visit the Vercel AI SDK documentation.
- For Zentry documentation, refer to the Zentry Platform.
- If you need further assistance, please feel free to reach out to us through following methods: