To use AWS Bedrock embedding models, you need to have the appropriate AWS credentials and permissions. The embeddings implementation relies on the boto3 library.
import osfrom zentry import Memory# For LLM if neededos.environ["OPENAI_API_KEY"] = "your-openai-api-key"# AWS credentialsos.environ["AWS_REGION"] = "us-west-2"os.environ["AWS_ACCESS_KEY_ID"] = "your-access-key"os.environ["AWS_SECRET_ACCESS_KEY"] = "your-secret-key"config = { "embedder": { "provider": "aws_bedrock", "config": { "model": "amazon.titan-embed-text-v2:0" } }}m = Memory.from_config(config)messages = [ {"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"}, {"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."}, {"role": "user", "content": "I'm not a big fan of thriller movies but I love sci-fi movies."}, {"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."}]m.add(messages, user_id="alice")