š¢ Announcing our research paper: Zentry achieves 26% higher accuracy than OpenAI Memory, 91% lower latency, and 90% token savings! Read the paper to learn how we're revolutionizing AI agent memory.
You can use LLMs from Ollama to run Zentry locally. These models support tool support.
import os
from zentry import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key" # for embedder
config = {
"llm": {
"provider": "ollama",
"config": {
"model": "mixtral:8x7b",
"temperature": 0.1,
"max_tokens": 2000,
}
}
}
m = Memory.from_config(config)
messages = [
{"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
{"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."},
{"role": "user", "content": "Iām not a big fan of thriller movies but I love sci-fi movies."},
{"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."}
]
m.add(messages, user_id="alice", metadata={"category": "movies"})
All available parameters for the ollama
config are present in Master List of All Params in Config.