config
is defined as an object with two main keys:
vector_store
: Specifies the vector database provider and its configuration
provider
: The name of the vector database (e.g., “chroma”, “pgvector”, “qdrant”, “milvus”, “upstash_vector”, “azure_ai_search”, “vertex_ai_vector_search”)config
: A nested dictionary containing provider-specific settingsParameter | Description |
---|---|
collection_name | Name of the collection |
embedding_model_dims | Dimensions of the embedding model |
client | Custom client for the database |
path | Path for the database |
host | Host where the server is running |
port | Port where the server is running |
user | Username for database connection |
password | Password for database connection |
dbname | Name of the database |
url | Full URL for the server |
api_key | API key for the server |
on_disk | Enable persistent storage |
endpoint_id | Endpoint ID (vertex_ai_vector_search) |
index_id | Index ID (vertex_ai_vector_search) |
deployment_index_id | Deployment index ID (vertex_ai_vector_search) |
project_id | Project ID (vertex_ai_vector_search) |
project_number | Project number (vertex_ai_vector_search) |
vector_search_api_endpoint | Vector search API endpoint (vertex_ai_vector_search) |
connection_string | PostgreSQL connection string (for Supabase/PGVector) |
index_method | Vector index method (for Supabase) |
index_measure | Distance measure for similarity search (for Supabase) |
Config
section in the respective vector database’s documentation.config
dictionary.