📢 Announcing our research paper: Zentry achieves 26% higher accuracy than OpenAI Memory, 91% lower latency, and 90% token savings! Read the paper to learn how we're revolutionizing AI agent memory.

Overview

Build a multi-user collaborative chat or task management system with zentry. Each message is attributed to its author, and all messages are stored in a shared project space. zentry makes it easy to track contributions, sort and group messages, and collaborate in real time.

Setup

Install the required packages:

pip install openai zentryai

Full Code Example

from openai import OpenAI
from zentry import Memory
import os
from datetime import datetime
from collections import defaultdict

# Set your OpenAI API key
os.environ["OPENAI_API_KEY"] = "sk-your-key"

# Shared project context
RUN_ID = "project-demo"

# Initialize zentry
mem = Memory()

class CollaborativeAgent:
    def __init__(self, run_id):
        self.run_id = run_id
        self.mem = mem

    def add_message(self, role, name, content):
        msg = {"role": role, "name": name, "content": content}
        self.mem.add([msg], run_id=self.run_id, infer=False)

    def brainstorm(self, prompt):
        # Get recent messages for context
        memories = self.mem.search(prompt, run_id=self.run_id, limit=5)["results"]
        context = "\n".join(f"- {m['memory']} (by {m.get('actor_id', 'Unknown')})" for m in memories)
        client = OpenAI()
        messages = [
            {"role": "system", "content": "You are a helpful project assistant."},
            {"role": "user", "content": f"Prompt: {prompt}\nContext:\n{context}"}
        ]
        reply = client.chat.completions.create(
            model="gpt-4o-mini",
            messages=messages
        ).choices[0].message.content.strip()
        self.add_message("assistant", "assistant", reply)
        return reply

    def get_all_messages(self):
        return self.mem.get_all(run_id=self.run_id)["results"]

    def print_sorted_by_time(self):
        messages = self.get_all_messages()
        messages.sort(key=lambda m: m.get('created_at', ''))
        print("\n--- Messages (sorted by time) ---")
        for m in messages:
            who = m.get("actor_id") or "Unknown"
            ts = m.get('created_at', 'Timestamp N/A')
            try:
                dt = datetime.fromisoformat(ts.replace('Z', '+00:00'))
                ts_fmt = dt.strftime('%Y-%m-%d %H:%M:%S')
            except Exception:
                ts_fmt = ts
            print(f"[{ts_fmt}] [{who}] {m['memory']}")

    def print_grouped_by_actor(self):
        messages = self.get_all_messages()
        grouped = defaultdict(list)
        for m in messages:
            grouped[m.get("actor_id") or "Unknown"].append(m)
        print("\n--- Messages (grouped by actor) ---")
        for actor, mems in grouped.items():
            print(f"\n=== {actor} ===")
            for m in mems:
                ts = m.get('created_at', 'Timestamp N/A')
                try:
                    dt = datetime.fromisoformat(ts.replace('Z', '+00:00'))
                    ts_fmt = dt.strftime('%Y-%m-%d %H:%M:%S')
                except Exception:
                    ts_fmt = ts
                print(f"[{ts_fmt}] {m['memory']}")

Usage

# Example usage
agent = CollaborativeAgent(RUN_ID)
agent.add_message("user", "alice", "Let's list tasks for the new landing page.")
agent.add_message("user", "bob", "I'll own the hero section copy.")
agent.add_message("user", "carol", "I'll choose product screenshots.")

# Brainstorm with context
print("\nAssistant reply:\n", agent.brainstorm("What are the current open tasks?"))

# Print all messages sorted by time
agent.print_sorted_by_time()

# Print all messages grouped by actor
agent.print_grouped_by_actor()

Key Points

  • Each message is attributed to a user or agent (actor)
  • All messages are stored in a shared project space (run_id)
  • You can sort messages by time, group by actor, and format timestamps for clarity
  • zentry makes it easy to build collaborative, attributed chat/task systems

Conclusion

zentry enables fast, transparent collaboration for teams and agents, with full attribution, flexible memory search, and easy message organization.